

ST. VIVEKANAND PUBLIC SCHOOL, SADABAD

WORKSHEET

Class 11 - Mathematics

Section A

1.	If A = { $x : x$ is a multiple of 3, x natural no., $x < 30$ then A - B is	} and B = {x : x is a multiple of 5, x is natural no., x < 30}	[1]
	a) {3, 6, 9, 12, 15, 18, 21, 24, 27, 30}	b) {3, 6, 9, 12, 18, 21, 24, 27}	
	c) {3, 5, 6, 9, 10, 12, 15, 18, 20, 21, 25, 27, 30}	d) {3, 6, 9, 12, 18, 21, 24, 27, 30}	
2.	In a set builder method the null set is represented by		
	a) { $x : x = x$ }	b) ϕ	
	c) { }	d) (x: $x \neq x$).	
3.	If $A = \{0, 1, 5, 4, 7\}$. Then the total number subsets of A are		[1]
	a) 20	b) 32	
	c) 64	d) 40	
4.	Two finite sets have m and n elements. The total number of subsets of the first set is 56 more than the total number of subsets of the second set. The values of m and n are		[1]
	a) 7, 4	b) 6, 4	
	c) 3, 3	d) 6, 3	
5.	If $A \cup B = B$ then		[1]
	a) $B\subset A$	b) $A\subseteq B$	
	c) B = ϕ	d) A $ eq \phi$	
6.	The smallest set A such that $A \cup \{1, 2\} = \{1, 2, 3, 5, 9\}$ is		[1]
	a) {1, 2, 5, 9}	b) {4, 5, 6}	
	c) {3, 5, 9}	d) {2, 3, 5}	
7.	Number of relations that can be defined on the set A	$A = \{a, b, c, d\}$ is	[1]
	a) 24	b) 4 ⁴	
	c) 16	d) 2 ¹⁶	
8.	Let A = $\{1, 2, 3\}$ and consider the relation R = $\{1, 1)$, (2, 2), (3, 3), (1, 2), (2, 3), (1,3) $\}$. Then R is		[1]
	a) neither symmetric, nor transitive	b) symmetric and transitive	
	c) reflexive but not symmetric	d) reflexive but not transitive	

9. The minimum value of $\sin x + \cos x$ is [1] b) $\sqrt{2}$ a) $-2\sqrt{2}$ d) $-\sqrt{2}$ c) 0 10. $R = \{(1, 1), (2, 2), (1, 2), (2, 1), (2, 3)\}$ be a relation on A, then R is [1] a) not anti symmetric b) symmetric d) Reflexive c) anti symmetric If $f(x) = \frac{\sin^4 x + \cos^2 x}{\sin^2 x + \cos^4 x}$ for $x \in R$ then f (2002). [1] 11. a) 2 b) 3 c) 4 d) 1 The domain of definition of the function $f(x) = \sqrt{\frac{x-2}{x+2}} + \sqrt{\frac{1-x}{1+x}}$ is [1] 12. b) None of these a) *\phi* d) $(-\infty, -2] \cup [2, \infty)$ c) [-1, 1] $\text{Let } A = \{x \in R : -1 \le x \le 1\} = B \text{ and } C = \{x \in R : x \ge 0\} \text{ and let } S = \{(x, y) \in A \times B : x^2 + y^2 = 1\}$ [1] 13. and $S_0 = \{(x, y) \in A \times C : x^2 + y^2 = 1\}$. Then a) S defines a function from A to C b) S₀ defines a function from A to B d) S defines a function from A to B c) S₀ defines a function from A to C If 5 cot θ = 4, then $\left(\frac{5\sin\theta - 3\cos\theta}{\sin\theta + 2\cos\theta}\right)$ = ? [1] 14. b) $\frac{3}{14}$ a) 1 d) $\frac{3}{4}$ $C) \frac{5}{14}$ $\sqrt{\frac{1+\sin x}{1-\sin x}} = ?$ [1] 15. a) $\cot \frac{x}{2}$ b) $\tan \frac{x}{2}$ c) $\tan\left(\frac{\pi}{4} + \frac{x}{2}\right)$ d) $\cot\left(\frac{\pi}{4} + \frac{x}{2}\right)$ If $0 < x < rac{\pi}{2}$, and if $rac{y+1}{1-y} = \sqrt{rac{1+\sin x}{1-\sin x}}$, then y is equal to [1] 16. a) $\cot \frac{x}{2} - \tan \frac{x}{2}$ b) $\cot \frac{x}{2}$ c) $\cot \frac{x}{2} + \tan \frac{x}{2}$ d) $\tan \frac{x}{2}$ $\sec\left(\frac{-33\pi}{4}\right) = ?$ [1] 17. a) $\frac{-\sqrt{3}}{2}$ b) $-\sqrt{2}$ d) $\frac{\sqrt{3}}{2}$ c) $\sqrt{2}$ $\sin 36^{\circ} = ?$ 18. [1] b) $\sqrt{\frac{10-2\sqrt{5}}{4}}$ d) $\sqrt{\frac{10+2\sqrt{5}}{4}}$ a) None of these c) $\frac{(\sqrt{5}-1)}{4}$ [1]

 $(8\cos^3 20^\circ - 6\cos 20^\circ) = ?$ 19.

2/6

	a) $\frac{5}{3}$ b) $\frac{5}{2}$			
	c) $\frac{\sqrt{3}}{2}$ d) 1			
20.	If $\tan \alpha = \frac{x}{x+1}$ and $\tan \beta = \frac{1}{2x+1}$, then $\alpha + \beta$ is equal to	[1]		
	a) $\frac{\pi}{6}$ b) $\frac{\pi}{3}$			
	c) $\frac{\pi}{4}$ d) $\frac{\pi}{2}$			
21.	Let A = {a, b}, B = {a, b, c}. Is A \subset B? What is A \cup B?	[1]		
22.	Are the A = $\{-2, -1, 0\}$ and B = $\{1, 2, 3\}$ pairs of equivalent sets?			
23.	Write down the subsets of the set: $F = \{2, \{3\}\}$			
24.	If A = {x : x \in W, x < 2}, B = {x : x N, 1 < x < 5} and C = {3, 5}. Find $\mathbf{A} \times (\mathbf{B} \cup \mathbf{C})$.			
25.	25. If the function t which maps temperature in degree Celcius into temperature in degree Fahrenheit is defined by			
	$t(C) = \frac{9C}{5} + 32$, then find the value of C, when $t(C) = 212$.			
26.	Let $f : R \to R$: $f(x) = x^3 + 1$ and $g : R \to R : g(x) = (x + 1)$. Find: $\left(\frac{1}{f}\right)(x)$	[1]		
	$\int x^2$, when $x < 0$	[1]		
27.	If f (x) = $\begin{cases} x^2, \text{ when } x < 0\\ x, \text{ when } 0 \le x < 1 \text{ Find f(1).}\\ \frac{1}{x}, \text{ when } x > 1 \end{cases}$			
28.	If A = [1, 3, 5] and B = [2, 3], then find A \times B	[1] [1]		
29.				
30.	A function f: $R \rightarrow R$ is defined by f (x) = x ² , x $\in R$. Determine range of f.			
31.	Prove that: $\sqrt{rac{1-\sin x}{1+\sin x}} + \sqrt{rac{1+\sin x}{1-\sin x}} = \left\{ egin{array}{c} rac{2}{\cos x}, \ ext{if} \ 0 \leq x < rac{\pi}{2} \\ -rac{2}{\cos x}, \ ext{if} \ rac{\pi}{2} < x \leq \pi \end{array} ight.$	[1]		
32.	Prove that $\cos(70^\circ+ heta)\cos(10^\circ+ heta)+\sin(70^\circ+ heta)\sin~(10^\circ+ heta)=rac{1}{2}$	[1]		
33.	Find the radius of the circle in which a central angle of 60° intercepts an arc of length 37.4 cm (use $\pi = rac{22}{7}$).	[1]		
	Section B			
34.	If A = { $\frac{1}{x}$: x \in N and x < 8} and B = { $\frac{1}{2x}$: x \in N and x \leq 4}, find: A \cup B	[2]		
35.	Let A = {a, b, c, d}, B = {a, b, c} and C = {b, d}. Find all sets X such that: $X \subset A$ and $X \not\subset B$.	[2]		
36.	Prove that $A \cap (A \cup B)' = \phi$.	[2]		
37.	Let $X = \{1, 2, 3, 4, 5, 6\}$. If n represent any member of X, express the set $n + 5 = 8$			
38.	Let A = $\{0, 1, 2, 3, 4, 5, 6, 7, 8\}$ and let R = $\{(0, b): a, b \in A \text{ and } 2a + 3b = 12\}$. Express R as a set of ordered	[2]		
	pairs. Show that R is a binary relation on A. Find its domain and range.			
39.	Find the domain and the range of the real function: $f(x) = \frac{3x-2}{x+2}$	[2]		
40.	Let A = {1, 2, 3, 4, 5, 6}. Let R be a relation on A defined by $R = \{(a, b): a, b \in A, b \text{ is exactly divisible by a}\}$.	[2]		
	Find the domain of R.	[0]		
41.	The function $F(x) = \frac{9x}{5} + 32$ is the formula to convert x°C to Fahrenheit units. Find: the value of x when $f(x) = 242$	[2]		
	212,			
	Interpret the result in each case.			
40	Hint: $F(x) = 212 \Rightarrow \frac{9x}{5} + 32 = 212 \Rightarrow x = 100 \Rightarrow 212^{\circ}F = 100^{\circ}C.$	[0]		
42.	If θ lies in the first quadrant and $\cos \theta = \frac{8}{17}$, then find the value of $\cos (30^\circ + \theta) + \cos (45^\circ - \theta) + \cos (120^\circ - \theta)$.	[2]		
43.	$\cos(30^{\circ} + \theta) + \cos(45^{\circ} - \theta) + \cos(120^{\circ} - \theta).$ In \triangle ABC prove that, if θ be any angle, then b $\cos\theta = \cos(A - \theta) + \cos(C + \theta).$	[2]		
43. 44.	Prove that: a sin A - b sin B = c (A - B)			
44. 45.	Show that: $\sin (B - C) \cos (A - D) + \sin (C - A) \cos (B - D) + \sin (A - B) \cos (C - D) = 0.$	[2] [2]		
		r=1		

50. Consider the real function $f: R \to R: f(x) = x + 5$ for all $x \in R$. Find its domain and range. Draw the graph of [3] this function.

Out of 25 members in a family, 12 like to take tea, 15 like to take coffee and 7 like to take coffee and tea both.

Let A, B and C be three sets such that $A \cup B = C$ and $A \cap B = \phi$ then prove that A = C - B.

51.	Draw the graph of the function $f(x) =$	$\left\{egin{array}{l} 1+2x\ 3+5x, \end{array} ight.$	$egin{array}{ll} x < 0 \ x \geq 0 \end{array}$. Also, find its range.	[3]
-----	---	---	--	-----

Find the domain and the range of the function $f(x) = \sqrt{16 - x^2}$ 52. [3] [3]

The relation f is defined by $f(x) = \begin{cases} x^2, 0 \le x \le 3\\ 3x, 3 \le x \le 10 \end{cases}$ and the relation g is defined by $g(x) = \begin{cases} x^2, 0 \le x \le 2\\ 3x, 2 \le x \le 10 \end{cases}$. Show that f is a function and g is not a function. 53.

54. In
$$\triangle ABC$$
, if a², b², c² are in A.P., prove that cot A, cot B, cot C are in A.P. [3]

55. Prove that:
$$\left|\cos x \cos\left(\frac{\pi}{3} - x\right) \cos\left(\frac{\pi}{3} + x\right)\right| \le \frac{1}{4}$$
. For all values of x. [3]

56. Prove that:
$$\sin^2 42^\circ - \cos^2 78^\circ = \frac{\sqrt{5}+1}{8}$$
. [3]

Section D

57. Read the text carefully and answer the questions:

A class teacher Mamta Sharma of class XI write three sets A, B and C are such that $A = \{1, 3, 5, 7, 9\}, B = \{2, 3, 5, 7, 9\}$

4, 6, 8} and C = {2, 3, 5, 7, 11}.

- (i) Write the intersecting of two set A and C?
- (ii) Write the condition for two sets A and B to be disjoint?
- (iii) Find $A \cap C$.

46.

47.

48.

49.

For any sets A and B show that

ii. B = { $x \in R : x^2 - 2x + 1 = 0$ }

Which of the following sets are equal ?

iv. D = { $x \in R : x^3 - 6x^2 + 11x - 6 = 0$ }

i. at least one of the two drinks

ii. only tea but not coffee iii. only coffee but not tea iv. neither tea nor coffee

i. $(A \cap B) \cup (A - B) = A$ ii. $A \cup (B - A) = A \cup B$

i. A = $\{1, 2, 3\}$

iii. $C = \{1, 2, 2, 3\}$

How many like

Find $A \cap B$. (iv)

Section E

58. Read the text carefully and answer the questions:

An airplane is observed to be approaching a point that is at a distance of 13 km from the point of observation and makes an angle of elevation of θ and the height of the airplane above the ground is 5km. Based on the above

[3]

[3]

[3]

[5]

[4]

information answer the following questions.

(i) The value of sin
$$2\theta$$

(i) The value of sin 2θ
(i) The value of sin 2θ
(ii) The value of sin 2θ
(iii) The value of cos 2θ
(ii) The value of cos 2θ
(iii) The value of cos 2θ
(iii) The value of cos 2θ
(iii) The value of sin $\left(\frac{\theta}{2}\right)$
(iii) The value of sin $\left(\frac{\theta}{2}\right)$
(iii) The value of sin $\left(\frac{\theta}{2}\right)$
(iv) The value of cos $\left(\frac{\theta}{2}\right)$
(v) The value of cot 2θ
(v) The va

 $i. A \cap D$

59.

60.

- $\text{ii.} \ A\cap C$
- iii. U \cap D
- iv. $A\cup\phi$
- v. $(U \cap \phi)'$
- vi. (U \cup A)'
- [5] 61. i. Let R be the relation on the set Z of all integers defined by $R = \{(x, y): x - y \text{ is divisible by } n\}$. Prove that

$$\label{eq:rescaled} \begin{split} \text{a.} \ & (x,\,y) \in \mathsf{R} \\ & \Rightarrow (y,\,x) \in \mathsf{R} \text{ for all } x,\,y \in \mathsf{Z}. \end{split}$$

5/6

[5]

b. (x, y) \in R and (y, z) \in R

 \Rightarrow (x, z) \in R for all x, y, z \in Z.

- ii. Find the domain and range of the function $f(x) = \frac{x^2-9}{x-3}$. iii. Find the domain of the function $f(x) = \frac{x^2+3x+5}{x^2+x-6}$.
- Let A = R {3} and B = R- {1}. Consider the function of f: A \rightarrow B defined by f(x) = $\frac{x-2}{x-3}$ is one one and 62. [5] onto.
- 63. If $A = \{2, 3, 5\}$ and $B = \{5, 7\}$, find:
 - i. $A \times B$
 - ii. $B \times A$
 - iii. $A \times A$
 - iv. $B \times B$

If $A = \{a,d\}$, $B = \{b, c, e\}$ and $C = \{b, c, f\}$, then verify that 64.

i. $A \times (B \cup C) = (A \times B) \cup (A \times C)$

ii.
$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$

65. Verify whether
$$\tan x \tan\left(x + \frac{\pi}{3}\right) + \tan x \tan\left(\frac{\pi}{3} - x\right) + \tan\left(x + \frac{\pi}{3}\right) \tan\left(x - \frac{\pi}{3}\right) = -3.$$
 [5]

66. Prove that: $\tan 20^\circ \tan 30^\circ \tan 40^\circ \tan 80^\circ = 1$

67. Prove that:
$$\cos 10^\circ \cos 30^\circ \cos 50^\circ \cos 70^\circ = \frac{3}{16}$$
.

If $\sin \alpha + \sin \beta = a$ and $\cos \alpha + \cos \beta = b$, prove that $\cos(\alpha - \beta) = \frac{a^2 + b^2 - 2}{2}$. 68. [5]

[5]

[5]

[5] [5]