ASSIGNMENT - II

(Polynomial)

(1) Obtain the zeroes of quadratic polynomial $\sqrt{3} x^{2}-3 x+4 \sqrt{3}$ and verify the relation between zeroes and coefficients.
(2) If α and β are the zeroes of the quadratic polynomial $f(x)=3 x^{2}-5 x-2$
(i) $\alpha^{2}+\beta^{2}$
(ii) $\alpha^{3}+\beta^{3}$
(iii) $\frac{\alpha^{2}}{\beta}+\frac{\beta^{2}}{\alpha}$
(3) If α and β are the zeroes of the polynomial $x^{2}+x-6$ find the value $\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}$
(4) If α and β are the zeroes of the polynomial $f(x)=x^{2}-5 x+4$ find the value $\frac{1}{\alpha}+\frac{1}{\beta}-2 \alpha \beta$
(5) If one zero of the polynomial$\left(a^{2}+9\right) x^{2}+13 x+6 a$ is reciprocal of the other find the value of ' a '.
(6) If 1 is a zero of the polynomial $p(x)=a x^{2}-3(a-1) x-1$ find the value of a.
(7) If α and β are the zeroes of $\mathrm{P}(\mathrm{t})=t^{2}-4 t+3$ then the value of $\alpha^{4} \beta^{3}+\alpha^{3} \beta^{4}$
(8) The parabola representing a quadratic polynomial $f(x)=a x^{2}+b x+c$ opens downward when -
(i) $\mathrm{a}<0$
(ii)
$\mathrm{a}>0$
(iii) $\mathrm{a}<1$
(d) $a>1$
(9) Find the zeroes of $f(x)=x^{2}-\sqrt[2]{2} x-16$.
(10) If α and β are the zeroes of the quadratic polynomial $f(t)=t^{2}-4(t+1)-c$ show that $(\alpha+1)(\beta+1)=1-C$.
(11) If α and β are the zeroes $f(x)=x^{2}-p x+q$ prove that $\frac{\alpha^{2}}{\beta^{2}}+\frac{\beta^{2}}{\alpha^{2}}=\frac{p^{4}}{q^{2}}+\frac{4 p^{2}}{q}+2$.
(12) Find a quadratic polynomial whose zeroes are reciprocals of the zeroes of the polynomial

$$
f(x)=a x^{2}+b x+c \quad \mathrm{a} \neq 0 \quad \mathrm{c} \neq 0
$$

(13) If one zero of the polynomial $3 x^{2}-8 x+2 k+1$ is 7 times the other find the of the value of k.
(14) If α and β are the zeroes of polynomial $f(x)=x^{2}-5 x+k$ such that $\alpha-\beta=1$ find the value of k .
(15) Find the zeroes of the quadratic polynomial $7 y^{2}-\frac{11}{3} y-\frac{2}{3}$ and verify relation between the zeroes and coefficient.
(16) If α and β are the zeroes of polynomial $p(x)=x^{2}-6 x+k$ find the value of k such that $\alpha^{2}+\beta^{2}=40$.
(17) Find the value of k such that the polynomial $x^{2}-(k+6) x+2(2 k-1)$ has the sum of its zeroes equal to half their product.
(18) If the zeroes of the polynomial $x^{2}+p x+q$ are double in value to the zeroes of $2 x^{2}-5 x-3$ find the value of p and q.
(19) If 1 is a zero of the polynomial $p(x)=a x^{2}-3(a-1) x-1$ then find the value of a . If α and β are the zeroes of the polynomial $x^{2}+x-6$ find the value of $\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}$

